Sequences & Series Review 1

Arithmetic Sequences:

Geometric Sequences:

Explicit:

$$a_n = a_1 + d(n-1)$$

Explicit:

$$a_n = a_1 r^{n-1}$$

Recursive:

$$a_1 = --$$

 $a_n = a_{n-1} + d$

Recursive:

$$a_1 = --$$

 $a_n = (a_{n-1})r$

Sum of a finite arithmetic series: $s = \frac{n(a_1 + a_n)}{2}$

Sum of a finite geometric series:
$$s = \frac{a_1 - a_n r}{1 - r} = \frac{a_1 (1 - r^n)}{1 - r}$$

Sum of a infinite geometric series:
$$s = \frac{a_1}{1-r}$$

What are the next three terms of the sequence?

For the following sequences, state whether they are Arithmetic, Geometric, or Neither. Then write an **explicit** formula for each.

4.
$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$$

6.
$$\frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \dots$$

For the following sequences, state whether they are arithmetic, geometric, or neither. Then write a **recursive** formula for each sequence.

7.
$$\frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \dots$$

- 8. 5, 3, 1, -1, ...
- 9. 3, 9, 27, 81, ...

Write the first five terms of the sequence.

10.
$$a_1 = 1$$

$$a_n = 2a_{n-1} + 3$$

Find the sum of the following finite series:

Write the following sums in Sigma notation.

13.
$$3+6+9+12+15+18+...+144$$

14.
$$\frac{1}{3} - \frac{1}{6} + \frac{1}{12} - \frac{1}{24} + \dots$$

Find the following sums:

15.
$$\sum_{n=1}^{21} 13 + 4(n-1)$$

16.
$$\sum_{n=1}^{\infty} 3 \cdot \left(\frac{8}{6}\right)^{n-1}$$

If the following sequence is arithmetic, find the missing value:

If the following sequence is geometric, find the missing value: